
(1)

Strecks Java 5 Extensions

Presented by Phil Zoio, Realsolve Solutions

 March 17, 2006

(2)

Agenda

● Background and introduction
● The Details

– Form validation
– Data binding and conversion
– Actions
– Interceptors
– Navigation

● Concluding comments

(3)

About Struts

● Most successful Java web framework
● First widely adopted MVC Model 2 framework
● Proven on thousands of projects

Ground-breaking in its time but these days:
● Not universally popular
● Overtaken by other frameworks

Various Struts initiatives
– Shale
– Struts Action 2 (WebWork integration)

(4)

Some Background

● In-depth experience last year with
– Component-based frameworks (Tapestry/JSF)
– Dependency injection (Spring)
– Java 5

● Requirement to build new web application in Struts
– Initially reluctant – didn't want to forgo advanced features
– Decided to add features to existing Struts

● After completion of project
– Internal refactoring
– Additional features added
– To be open sourced
– Provisional name Strecks

(5)

About Strecks Java 5 Extensions

● Built on existing Struts 1.2.x code base
● Main features include

– Pure POJO action beans
– Action dependency injection
– Action controllers
– Interceptors
– Form validation using annotations
– Data conversion and binding using annotations
– Pluggable navigation

(6)

Strecks design goals

● offer or even improve on features offered by competitive

frameworks
● simplify, not replace, existing Struts programming model

– no major high level architectural changes
– actions, action forms, etc. still present, but enhanced
– UI and configuration unchanged

● don't air your dirty linen in public
– users don't want to see framework internals

● introduce no compatibility issues apart from Java 5
● keep easy to learn for existing Struts users

(7)

Strecks - The Details

(8)

Form Validation

(9)

Form Validation in Struts 1.2

● Manual validation code verbose and tedious
● XML-based validations using Validator framework not ideal:

– Large validation file
– Verbose format “XML Hell”

(10)

Form Validation – Struts 1.2 Example

if (days == null)
{
 ActionMessage error =

new ActionMessage("holidaybookingform.days.null");
 errors.add("days", error);
 hasError = true;
}
else
{
 if (!GenericValidator.isInt(days))
 {
 ActionMessage error =

new ActionMessage("holidaybookingform.days.number”);
 errors.add("days", error);
 hasError = true;
 }
}

(11)

Form Validation in Strecks

● Still uses ActionForm
● Interface between view layer and action forms unchanged
● Validation (and binding) layer within ActionForm

– Implement marker interface AnnotatedForm
– Add @Validate... annotations to setters

– validate() method will still be called for additional

(manual validation)
● Application not exposed to framework internals

(12)

Form Validation – Strecks Example

@ValidateRequired(key = "holidaybookingform.days.null")
@ValidateInteger(key = "holidaybookingform.days.number")
public void setDays(String days)
{
 this.days = days;
}

(13)

Adding Form Validators

Easy to add validators
● Validator implements Validator interface

public boolean validate(T value);
● Validator instance created by ValidatorFactory
● ValidatorFactory class identified by annotation
● Validation parameters passed in via annotation

Called the “Annotation Factory” pattern

Consequence: full extensibility with
● No XML
● No existing file changes

(14)

Data Binding And Conversion

(15)

Binding and Conversion in Struts 1.2

● Use of richly typed ActionForms tricky
● No per-field control of type conversion
● Manual data binding code verbose and tedious

(16)

Bind and Conversion – Struts 1.2 Example

public void readFrom(HolidayBooking booking)
{
 if (booking != null)
 {
 if (booking.getStartDate() != null){
 this.startDate = new

java.sql.Date(booking.getStartDate().getTime()).toString();
}

 }
}

public void writeTo(HolidayBooking booking)
{
 if (this.startDate != null && this.startDate.trim().length() > 0)
 booking.setStartDate(java.sql.Date.valueOf(startDate));
}

(17)

Binding and Conversion in Strecks

As with validation
● Binding and conversion layer within ActionForm

– Implement marker interface AnnotatedForm
– Add @Bind... and @Bind... to annotations getters
– Add getters and setters for domain model objects
– Controller will call bind handlers

● Application not exposed to framework internals

(18)

Bind and Conversion – Strecks Example

private HolidayBooking booking;

@BindSimple(expression = "booking.startDate")
@ConvertDate(pattern = "yyyy-MM-dd")
public String getStartDate()
{

return startDate;
}

(19)

Adding Bind Handlers

● Bind handler implements BindHandler interface
● BindHandler instance created by BindHandlerFactory

public void bindInwards(Object src, String property);
public void bindOutwards(Object src, String property);

● BindHandlerFactory class identified by annotation
● Binding parameters passed in via annotation
● Converter class can be specified in annotation

(20)

Adding Stand-alone Type Converters

Converter can also be specified in own annotation
● Converter annotation in same method as bind annotation
● Converter implements Converter interface

public T toTargetType(S toConvert);
public S toSourceType(T toConvert);

● Converter instance created by Converteractory
● ConverterFactory class identified by annotation
● Converter parameters passed in via annotation

Decouples bind handler and converter definition

Used when converter must be parameterized

(21)

Dependency Injection

(22)

Dependency Resolution in Struts 1.2

● State held in request, session and context attributes
– Verbose API
– Type casting necessary
– Not very object oriented

● Manual conversion of request parameters
● Service layer references obtained via programmatic hooks

(23)

Dependency Resolution – Struts 1.2 Example

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request,

 HttpServletResponse response) throws Exception
{
 //use Spring ActionSupport superclass to get context

HolidayBookingService service = (HolidayBookingService)
getWebApplicationContext().getBean(

 "holidayBookingService");

 long id =
Long.parseLong(request.getParameter("holidayBookingId"));

 HolidayBooking holidayBookings = service.getHolidayBooking(id);
 request.setAttribute("holidayBooking", holidayBookings);

 return mapping.findForward("success");
}

(24)

Strecks Dependency Injection

● Actions instantiated on per-request basis
● Dependencies resolved declaratively via annotations
● Support for:

– Typed request parameters (using Converter)
– Request, session, application context attributes
– Spring beans, message resources, locale, ActionForm
– etc...

(25)

Dependency Injection – Strecks Example

public String execute()
{
 HolidayBooking holidayBookings

= service.getHolidayBooking(holidayBookingId);
 webHelper.setRequestAttribute("holidayBooking", holidayBookings);
 return "success";
}

@InjectSpringBean(name = "holidayBookingService")
public void setService(HolidayBookingService service) {
 this.service = service;
}

@InjectRequestParameter(required = true)
public void setHolidayBookingId(long holidayBookingId){
 this.holidayBookingId = holidayBookingId;
}

(26)

Adding Dependency Injection Mechanisms

● Injection handler implements InjectionHandler interface
public Object getValue(ActionContext context);

● InjectionHandler instance created by
InjectionHandlerFactory

● InjectionHandlerFactory class identified by

annotation
● Injection parameters passed in via annotation

Injection possible for any data obtained via request, response,

application context, action mapping, action form

(27)

Actions and Controllers

(28)

Actions in Struts 1.2

● Actions must be thread-safe
– No request-specific instance fields
– Request dependency injection impossible

● Single inheritance hierarchy
● Difficult to reuse request processing logic

(29)

Actions in Strecks

Implemented by combination of action controller and action bean
● Controller implements common request workflow
● Action bean handles domain-specific processing tasks

(30)

Action Beans

● Pure POJOs
● Registered in struts-config.xml
● Identify controller using annotation
● Implement controller-defined interface
● Dependencies resolved via dependency injection

Any request processing pattern can be abstracted into a

controller. Action beans handle the fine grained domain

specific action interactions

(31)

Action Bean Example Outline

@Controller(name = BasicSubmitController.class)
public class SubmitEditBookingAction implements BasicSubmitAction
{

public String cancel()
{

//implementation ommitted;
}

public String execute()
{

//implementation omitted
}

//injected properties

}

(32)

Action Beans Example Implementation

public String cancel()
{
 webHelper.setRequestAttribute("displayMessage", "Cancelled operation");
 webHelper.removeSessionAttribute("holidayBookingForm");
 return "success";
}

public String execute(){
 HolidayBooking holidayBooking = form.getBooking();
 holidayBookingService.updateHolidayBooking(holidayBooking);

 webHelper.setRequestAttribute("displayMessage", "Successfully updated
entry: " + holidayBooking.getTitle());

 webHelper.removeSessionAttribute("holidayBookingForm");

 return "success";
}

(33)

Action Controllers

● Defines action bean's interface
● Implement request processing workflow
● Instantiates action bean per request
● Interacts with action bean through interface
● Single instance, holds no request state
● Various out the box implementations, including

– form handling controllers
– dispatch controllers

● Single controllers reusable across many actions

(34)

Controller Implementation Outline

@ActionInterface(name = BasicSubmitAction.class)
public class BasicSubmitController extends BaseBasicController
{

@Override
protected ViewAdapter executeAction(Object actionBean,

ActionContext context) {

BasicSubmitAction action = (BasicSubmitAction) actionBean;
//omitted ... figure out whether form is cancelled
if (form instanceof BindingForm && !cancelled)
{

//omitted ... do binding and call preBind();
}

String result = cancelled ? action.cancel() : action.execute();
return getActionForward(context, result);

}
}

(35)

Action Bean Annotations

● Framework for adding behaviour through annotations
– ActionBeanAnnotationReader interface

● Extends contract between controller and action bean
● Fully extensible: no XML or source file changes
● Uses:

– Reading dependency injections
– Pluggable navigation
– Action bean “source” configuration

● @SpringBean
● Singleton action beans (planned)

– Dispatch method lookup
– Action-specific interceptors (planned)

(36)

Interceptors

(37)

About Interceptors

Most web applications have common operations:
● Logging
● Authentication
● Custom state management
● etc.

In Struts 1.2, implemented either via:
● RequestProcessor subclasses
● Common Action base classes

Interference with inheritance hierarchy

(38)

Interceptors in Strecks

● Interceptor interfaces
– BeforeInterceptor
– AfterInterceptor

● Interceptors registered via configuration
● BeforeInterceptor

– Called after dependency injection
– Interrupt execution by throwing exception

● AfterInterceptor called before view handling
– Exceptions simply logged

● Neither can return navigation result

(39)

Interceptor Example - Strecks

public class ActionLoggingInterceptor implements BeforeInterceptor,
AfterInterceptor

{
public void beforeExecute(Object actionBean, ActionContext context)
{

HttpServletRequest request = context.getRequest();
log.info("Starting action for " + request.getRequestURI());
log.info("Using " + actionBean.getClass().getName());

}

public void afterExecute(Object actionBean, ActionContext context)
{

HttpServletRequest request = context.getRequest();
log.info("Ended action for " + request.getRequestURI());

}
}

(40)

Struts Extensions Action Invocation

Controller Request
Processor

Controller
Delegate

Controller
Action

POJO Action
Bean

● Implements
extended
behaviour

● Extends Action
● Implements request
workflow

● POJO with DI
● Named in
struts-config.xml
● IDs controller
using annotations

delegates to

execute()

Interceptors

● Either pre- or
post
● Module-specific
● zero or more

instantiates, injects dependencies

beforeExecute()

afterExecute()

calls
methods,
executes
workflow

Action
Forward

● extends
RequestProcessor
● minimal
implementation

(41)

Navigation

(42)

Navigation in Struts 1.2

● Navigation via returning ActionForward
● Can be created manually or via
actionMapping.findForward()

But limited support for alternative view rendering
● Typically implemented:

– Within action, with null ActionForward returned
– Forwarding to external servlet (e.g VelocityStruts)

(43)

Navigation in Strecks

● Two sets of controller implementations
– public String method() result gets ActionForward

(outcome-based navigation)
– other uses pluggable navigation via @NavigateForward

annotation

Convenient solution vs flexible solution

(44)

Basic Controller Navigation

@Controller(name = BasicController.class)
public class ExampleBasicAction implements BasicAction
{

private String message;

public String execute()
{

message = "Executed " + ExampleBasicAction.class.getName();
return "success"; //

}

public String getMessage()
{

return message;
}

}

(45)

Navigable Controller Navigation

@Controller(name = NavigableController.class)
public class ExampleNavigableAction implements NavigableAction
{

private String message;

public void execute()
{

message = "Successfully executed";
}

@Navigate
public String getResult()
{

return "success";
}

public String getMessage(){ return message; }
}

(46)

More on Navigation

● Controllers return ViewAdapter (not ActionForward)

– ActionForwardViewAdapter class

– RenderingViewAdapter interface
● ViewAdapter allows support for alternative view rendering

mechanisms
– Allows, for example, rendering via Spring views
– AJAX, Remoting, XSLT, etc. easily supported

● Support for “page” classes for supporting formatting logic
● Support for redirect after post

(47)

Summary

(48)

Conclusion

Strecks's aim has been to:
● Match the simplicity of Struts
● Match the validation and type conversion power of JSF/Tapestry
● Match the flexibility of Spring MVC and WebWork

(49)

Who Should Use Strecks?

Good solution for enterprises which:
● Have invested in Struts

– Developer knowledge
– Existing applications

● Want to take advantage of powerful Java 5 features
● Want a framework supporting modern best practices

– Ease of testability
– Use of interfaces, design patterns & good OOP
– dependency injection

● Want these features now
● BUT Don't want the pain of a bigger migration

(50)

Current Status

● Ready for open source release
● Nearly version 1.0 ready
● Should be announcement very shortly
● Any help would be appreciated ...

